Optimization of Cropping pattern using Linear Programming Model for Markandeya Command Area

R. Shreedhar, Chandrashekarayya G. Hiremath & Girish G.Shetty

ABSTRACT

Agriculture is one of major activity in INDIA. Overall development depends on food production in service of existing or growing population with maximum benefits and optimal utilization of water and land resources. Management of this water and land resources is also one of the main financial development. Hence there is necessity of implementation of techniques in optimum usage of such available resources. Also Keeping in view of socio economic conditions, the present study makes an attempt to develop optimum cropping pattern with the constraints of available resources like water usage and also labour, fertilizers, seeds, etc., and ultimately getting maximum net benefits. The objective function for multi crop model are formulated using LP for maximizing the net benefits, by keeping all other available resources (such as cultivable land, seeds, fertilizers, human power, pesticides, cash etc) as constraints. Markandeya command area in Karnataka State, India is taken for the study. The study resulted in optimal cropping pattern for different water availabilities ranging from 2000 Ha-m to 5500 Ha-m. The maximum net benefit for the study area varied from Rs. 53.2 Crores for 2000 Ha-m water availability to Rs.78 Crores at 5000 Ha-m Water availability.

Index terms: Optimization techniques, Linear Programming, optimal crop pattern, maximum net Benefits, Water Availability.

1. Introduction

Dwindling water resources and increasing food requirements require greater efficiency in water use, both in rain fed and in irrigated agriculture. Regulated irrigation provides a means of reducing water consumption while minimizing adverse effects on yield. CROPWAT model can play a useful role in

[•] R.Shreedhar is currently Associate Professor in Department of Civil Engineering, KLS Gogte Institute of Technology, Belagavi, Karnataka State, India, PH-91-9845005722. E-mail:rshreedhar@git.edu

[•] Chandrashekarayya G Hiremath is currently Assistant Professor in Department of P.G. Studies, V.T.U., Belagavi, Karnataka State, India, PH-91-9620313624 E-mail: cghiremath@vtu.ac.in

[•] Girish G Shetty is currently pursuing masters degree program in Water & Land Management, Department of P.G. Studies, V.T.U., Belagavi, Karnataka State, India, PH-918971236143. E-mail: girish16shetty@gmail.com

developing practical recommendations for optimizing crop production under conditions of scarce water supply. CROPWAT [1] is a practical tool to help agrometeorologists, agronomists and irrigation engineers to carry out standard calculations for evapotranspiration and crop water use studies, and more specifically the design and management of irrigation schemes. It allows the development of recommendations for improved irrigation practices, the planning of irrigation schedules under varying water supply conditions, and the assessment of production under rainfed conditions or deficit irrigation. Ali Abdzad Gohari adopted the CROPWAT model to appropriately estimate the yield reduction caused by water stress and climatic impacts. The simulation results analysis suggest that in both condition rainfed and irrigated, the largest yield reduction occurred in the stage three (developmental stage) [2]. A study was carried out by Nithya et al to determine the crop water requirement of some selected crops for the command area in Kunigal taluk. These crops include rice, pulses, groundnut, sugarcane and millet (ragi). Crop water requirement for each of the crops was determined using 30-year climatic data in CROPWAT. Reference crop evapotranspiration (ETo) was determined using the FAO Penman Monteith method. [3]. Shreedhar et.al carried out study to review the crop yield responses to deficit irrigation for the major crops in Kunigal command area [4].

To plan the with regard to distribution of water resources to the crop, it is important to optimize the available land and water resources to achieve maximum returns. To solve such problems, the mathematical programming models like linear programming (LP), dynamic programming (DP) and genetic algorithm (GP) are used. It is LP model that is more popular because of the proportionate characteristic of the allocation problem. Linear programming models can handle a large number of constraints and thus, are an effective tool to aid in the optimization process. Hall and Dracup (1970) proposed a linear programming model to maximize the net return and select an optimal cropping pattern [5]. Loucks et al.(1981) discussed in detail about the micro level irrigation planning with detailed examples [6]. Singh et al. (2001) applied linear programming model to Shahi distributory command area to obtain net returns at different water availability levels [7]. Srinivasa Raju et al. (2000) used linear programming models to obtain various possible optimal cropping patterns and optimal operational policies considering different dependability inflow levels. [8].

2. Study area

The area taken for the study is Markandeya Reservoir Project as shown in Figure 1.0. The river Markandeya is a major tributary to Ghataprabha River which is a tributary to river Krishna. It takes its origin near Bailur in the Western Ghats and flows for a length of 66 kms before it joins river Ghataprabha near Gokak. The Markandeya River flows entirely in Belgaum district of Karnataka state with a drainage basin of 432 Sqkms. The project envisages the construction of concrete dam across Markandeya River near Shirur village in Belgaum district to irrigate lands on both banks to an extent of 14850 Hectares of Belgaum, Hukkeri, Gokak, and Saundatti Talukas. The proposed dam site across Markandeya river is located at latitude 16°2′0″N and longitude 74°38′30″E and near Shirur village which is about 10 kms from Pachapur railway station on Miraj-Bangalore section of the South

1312

Central Railway. The site is 50kms from Belgaum and is approachable by road taking off near Hattargi on Pune- Bangalore road (NH-4) and via Hidkal Dam site. The area is of moderate climate with an average temperature of 26.43°C. The average rainfall in the command is of the order of 48cms to 64cms and unevenly distributed resulting in failure of crops. The soil of this region is fertile and good. Assured crops can be raised in the region by providing irrigation facilities.

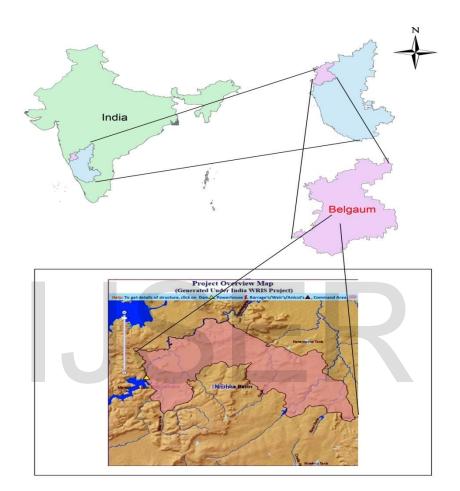


Figure 1.0 Location Map of Markandeya Study area

3.0 LP Model formulation

The different proposed cropping pattern scenario is formulated for Markandeya command area based on irrigable command area and volume of water at different water availability in the reservoir. The irrigation water requirements of major crops in the study area are estimated. A linear programming model is formulated to suggest the optimal cropping pattern giving the maximum net benefit at different water availability in the reservoir. The objective function of the model is subject to the following constraints: water availability, crop land requirement, Human labour cost, Animal and Machine power cost, Seed cost, Fertlizers and Manure cost, Fixed cost etc.

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 ISSN 2229-5518

Objective function: Maximize net benefit

$$Z = \sum (\mathbf{Y}_{i} \times \mathbf{A}_{i}(\mathbf{R}_{i} - \mathbf{C}_{i})$$

where,

Yi=Yield of 'i'th crop in study area in Quintal, Ai= Area of 'i'th crop in study area in Hectare, Ri= Market price of 'i'th crop in Rs/Qtl and Ci= Cost of cultivation in Rs/Qtl

The above objective function is subjected to the following requirements

Constraints on Water Availability

$$\sum \text{NIR}_{i} \times A_{i} \le WA$$

where, NIR_i =Net Irrigation Requirement for the ith crop ,WA=Water Availability in Ha-m and A_i=Area of ith crop in study area

Constraints on Crop land requirement

$$\sum A_i \le CCA$$

where, A_i =Area of ith crop in Study area in Ha and CCA= Cultivable Command Area in Ha.

Constraints on Human labour cost

$$\sum \text{CHL}_i \times A_i \leq \text{CHL}$$

where, CHL_i =Cost of Human Labour Per Ha in Rs, A_i =Area of ith crop in Study area in Ha and CHL= Total cost of Human labour for entire CCA in Rs.

Constraints on Animal and Machine power cost

$$\sum CAMP_i \times A_i \leq CAMP$$

where, $CHL_i=Cost$ of i^{th} crop human labour charges Per Ha in Rs. $A_i=Area$ of i^{th} crop in Study area in Ha and CHL= Total cost of Human labour for entire CCA in Rs.

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 ISSN 2229-5518

Constraints on seed cost

$$\sum \mathsf{CS}_i \times \mathbf{A}_i \leq \mathsf{CS}$$

Where, CS_i =Cost of i^{th} crop seed per Ha in Rs., A_i =Area of i^{th} crop in Study area in Ha. and CS= Total cost of seeds per entire CCA in Rs.

Constraints on Fertilizer and Manure cost

$$\sum \mathsf{CFM}_i \times \mathsf{A}_i \leq \mathsf{CFM}$$

Where, CFM_i =Cost of ith crop Fertilizers and Manure per Ha in Rs., A_i =Area of ith crop in Study area in Ha.and CFM= Total cost of Fertilizers and Manure per entire CCA in Rs.

Constraints on Interest on Workmanship cost

$$\sum \text{CIW}_i \times \textbf{A}_i \leq \text{CIW}$$

Where, CIW_i =Cost of i^{th} crop interest on workmanship per Ha in Rs, A_i =Area of i^{th} crop in Study area in Ha.and CIW= Total cost of Interest on Workmanship per entire CCA in Rs.

Constraints on Plant Protection cost

$$\sum CPPC_i \times A_i \leq CPPC$$

Where, $CPPC_i$ =Cost of ith crop plant protection charges per Ha in Rs, A_i =Area of ith crop in study area in Ha and CPPC= Total cost of plant protection charges per entire CCA in Rs.

Constraints on Fixed cost

$$\sum \mathsf{CFC}_{i} \times \mathsf{A}_{i} \leq \mathsf{CFC}$$

Where, CFC_i =Cost of i^{th} crop fixed cost (land revenue, surface water charges) per Ha in Rs. , A_i =Area of i^{th} crop in study area in Ha.and CFC= Total amount of fixed cost per entire CCA in Rs.

Constraints on Unforeseen Expenditure

$$\sum \text{CUFE}_{i} \times \text{A}_{i} \leq \text{CUFE}$$

Where, $CUFE_i$ =Cost of ith crop unforeseen expenditure per Ha in Rs. A_i =Area of ith crop in study area in Ha.and CUFE= Total amount of unforeseen expenditure per entire CCA in Rs.

4.0 Results and discussions

4.1 ET0 Calculation using CROPWAT

The CROPWAT software is used to determine the radiation in MJ/m²/day and ETo in mm/day using the average input data of 10 years collected from Hidkal Meteorological station and is presented in Table 1.0. For the area under study, the ETo values varied with minimum value of 3.23 mm/day in December to maximum value of 5.36mm/day in May (Table 1.0).

Month	Min Temp	Max Temp	Humidity	Wind	Sun	Radiation	ЕТо
	°C	°C	%	m/s	hours	MJ/m²/day	mm/day
January	14.9	30.1	62	0.6	8.8	18.7	3.33
February	16.9	32.2	61	0.6	9.2	21	3.91
March	19.9	34.6	57	0.6	9.3	22.9	4.68
April	21.9	36.4	55	0.7	8.8	23	5.15
Мау	21.8	35.8	57	1	8.3	22.3	5.36
June	20.7	30.4	62	1.6	5.4	17.7	4.55
July	20	27.8	62	1.8	2.7	13.7	3.83
August	20.1	28.1	65	1.5	4.1	15.7	3.84
September	20.3	29.3	65	1.2	5.3	17	3.86
October	20.3	31.1	65	0.8	6.9	18.1	3.83
November	18.5	30.1	65	0.6	7.8	17.7	3.45
December	15.4	29.3	65	0.6	8.7	18	3.23

4.2 Rainfall

The average rainfall for a 30 year period is calculated and the data on the monthly basis is given in CROPWAT for calculating effective rainfall. Effective rainfall refers to the portion of precipitation that can effectively be used by the plants. Though there are several methods for computing effective rainfall, USDA soil conservation service method is used. The other methods one can decide to use from CROPWAT to find effective rainfall are fixed percentage method, Dependable rainfall formula and Empirical formula.

The effective rainfall per month for the study area using USDA S.C. method is as given in Table 2.0. The average annual rainfall for the study area is 664.4 mm and the effective rainfall used by the crops is 554.6 mm which is 83.5 % of the average annual rainfall.

Month	Mean Monthly (past 30year data) Rainfall in mm	Effective Rainfall (USDA S.C method) ir mm		
Jan	1.1	1.1		
Feb	1	1		
Mar	6	5.9		
Apr	21	20.3		
May	48	44.3		
Jun	127	101.2		
Jul	144	110.8		
Aug	105	87.4		
Sep	97	81.9		
Oct	90	77		
Nov	21	20.3		
Dec	3.3	3.3		
	664.4	554.6		

 Table 2.0:
 Rainfall and Effective rainfall in study area

4.3 Irrigation Requirements for the major crops in study area

Crop water requirement (CWR) refers to the amount of water required to compensate the evapotranspiration loss from the cropped field also synonymously known as crop evapotranspiration (ETc). CWR refers specially to the amount of water to be supplied whereas ETc refers to the amount of water that crop has lost through evapotranspiration. ETc is determined by multiplying the crop coefficient Kc with the reference crop evapotranspiration ETo. "

ETc is referred to evapotranspiration from disease free, well fertilized crop grown under optimum or standard conditions. These comprises of optimum soil water and achieving full production under given climatic conditions. The effects of characteristics that distinguish field crops from reference grass crop are integrated into the crop co-efficient Kc .The difference in leaf anatomy, stomata characteristics, aerodynamic properties and albedo cause the ETc to differ from ETo. Due to valuations in the crop characteristics throughout its growing cycle, Kc for a given crop changes from sowing till harvest. " Irrigation requirement is calculated at decade time step. It refers to the amount of water required to be

supplied to crop so as to meet CWR. Irrigation requirement is calculated using the formula

Irrigation requirement = $ET_c - P_{eff}$

where Peff is the effective rainfall.

Season	Сгор	NIR in mm
	Jowar	159.9
Kharif	Groundnut	153.8
Kildili	Maize	159.9
	Pulses	86.01
	Jowar	208.6
	Maize	236.9
Rabi	Wheat	286.3
Rabi	Bengal Gram	272.5
	Green Gram	207.8
	Sunflower	184.5
Two Season	Cotton	183.7

Table 3.0: Net Irrigation requirement for major crops by CROPWAT

4.4 Optimization of cropping pattern with different water policies

The linear programming model is run for lowest water availability of 2000 Ha-m and then the model is also run for increased water availability in the increments of 500 Ha-m. For each run, the optimal area of each crop to be allotted shall be less than or equal to total area of land allotted to each of the crops as given by the Irrigation department. The decision variables in each case are the optimal area of land allotted to each of the crops such that maximum net benefit is obtained. However, the study was also carried for each of the water availability case by varying the allotted areas for each crop by ± 10 % to ± 50 %.

The maximum cultivable areas and maximum net benefit obtained for each run in LP model for various water availability in the reservoir is as given in Table 4.0 to 11.0.

Optimal areas in Ha obtained at 2000Ha-m of Water Availability									
CROPS	Ai≤TIA	10%	20%	30%	40%	50%			
Kh. Jowar	2435	2205	1960	1823.07	1470	1225			
Kh. Groundnut	3910	3850.21	4692	5083	5474	4643.23			
Kh. Maize	3537	3213	3815.89	4641	2784.75	1785			
Kh. Pulses	3435	3091.5	2748	2404.5	2061	1717.5			
Rb. Jowar	0	1318.5	1172	1025.5	879	732.5			
Rb. Maize	682.06	0	0	0	0	0			
Rb. Wheat	0	0	0	0	0	0			
Rb. Bengal Gram	0	463.5	412	360.5	309	257.5			
Rb. Green Gram	0	463.5	412	360.5	309	257.5			
Rb. Sunflower	1080	0	0	0	648	540			
Cotton	0	0	0	0	0	742.5			
CCA	15112.07	14605.21	15211.89	15698.07	13934.76	11900.73			
Net Benefit in Cr	54.10	43.73	49.40	53.20	54.12	46.20			

Table 4.0: Optimal Crop area for water availability of 2000 Ha-m

1318

	Optimal areas in Ha obtained at 2500 Ha-m of Water Availability								
CROPS	Ai<=TIA	10%	20%	30%	40%	50%			
Kh. Jowar	2435	2205	1960	1715	1470	1225			
Kh. Groundnut	3910	4301	4692	3852.42	5474	5865			
Kh. Maize	3570	3532.98	3469.74	2499	3849.6	2268.26			
Kh. Pulses	3435	3091.5	2748	2404.5	1374	1717.5			
Rb. Jowar	0	1318.5	1172	1025.5	879	732.5			
Rb. Maize	1955	1759.5	1564	1368.5	1173	977.5			
Rb. Wheat	148.82	0	0	0	0	0			
Rb. Bengal Gram	0	463.5	412	360.5	309	257.5			
Rb. Green Gram	0	0	412	360.5	309	257.5			
Rb. Sunflower	1080	0	0	756	648	540			
Cotton	0	0	0	0	0	742.5			
CCA	16534.82	16671.99	16429.74	14341.92	15485.62	14583.26			
Net Benefit in Cr	58.35	52.54	57.80	49.60	60.14	57.90			

Table 5.0: Optimized cropping pattern in study area for water availability of 2500 Ha-m

Table 6.0: Optimized cropping pattern in study area for water availability of 3000 Ha-m

Optimal areas in Ha obtained at 3000 Ha-m of Water Availability									
CROPS	Ai<=TIA	10%	20%	30%	40%	50%			
Kh. Jowar	2435	2695	1960	1715	1850	1225			
Kh. Groundnut	3910	4301	4103.53	3330.1	5474	4481.45			
Kh. Maize	3570	3927	2856	2499	3487.14	1785			
Kh. Pulses	3435	3778.5	2748	2404.5	2061	1717.5			
Rb. Jowar	0	1318.5	1172	1025.5	879	732.5			
Rb. Maize	1955	1759.5	1564	1368.5	1173	977.5			
Rb. Wheat	1399.82	0	0	0	0	1690			
Rb. Bengal Gram	0	463.5	412	360.5	309	257.5			
Rb. Green Gram	0	463.5	412	360.5	309	257.5			
Rb. Sunflower	1080	343.54	0	756	648	540			
Cotton	0	0	1188	1039.5	891	742.5			
CCA	17784.82	19050.05	16415.53	14859.09	17081.8	14406.46			
Net Benefit in Cr	6.23	5.84	5.107	4.944	6.31	5.34			

	Optimal areas in Ha obtained at 3500Ha-m of Water Availability								
CROPS	Ai<=TIA	10%	20%	30%	40%	50%			
Kh. Jowar	2435	2695	1960	3185	1470	3675			
Kh. Groundnut	3910	4301	4635	5083	4216.8	5013.8			
Kh. Maize	3570	3927	2856	2950.67	2142	1785			
Kh. Pulses	3435	3328.99	2748	2404.5	2061	1717.5			
Rb. Jowar	1022.63	1318.5	1172	1025.5	879	732.5			
Rb. Maize	1955	1759.5	1564	1368.5	1173	977.5			
Rb. Wheat	1587.02	0	0	0	2028	1690			
Rb. Bengal Gram	0	463.5	412	360.5	309	257.5			
Rb. Green Gram	0	463.5	412	360.5	309	257.5			
Rb. Sunflower	1080	0	864	990.09	648	855.93			
Cotton	0	1336.5	1188	1030.5	891	742.5			
CCA	18994.65	19593.5	17811	18767.77	16126.88	17704.74			
Net Benefit in Cr	65.00	59.00	61.50	66.90	57.03	65.18			

Table 7.0: Optimized cropping pattern in study area for water availability of 3500 Ha-m

Table 8.0: Optimized cropping pattern in study area for water availability of 4000 Ha-m

Optimal areas in Ha obtained at 4000 Ha-m of Water Availability									
CROPS	Ai<=TIA	10%	20%	30%	40%	50%			
Kh. Jowar	2435	2695	2940	1715	3430	3675			
Kh. Groundnut	3910	4301	4146.25	3952.3	4316.19	4070.35			
Kh. Maize	3570	3674.72	4284	2499	2142	3312.52			
Kh. Pulses	3435	3091.5	2748	2404.5	2061	1717.5			
Rb. Jowar	1465	1318.5	1248.69	1025.5	879	732.5			
Rb. Maize	1955	1759.5	1564	1368.5	1173	977.5			
Rb. Wheat	828.55	0	0	2366	2028	1690			
Rb. Bengal Gram	0	463.5	412	360.5	309	257.5			
Rb. Green Gram	0	463.5	412	360.5	309	257.5			
Rb. Sunflower	1080	1027.7	1296	756	1144.47	1620			
Cotton	1181.57	1336.5	1188	1039.5	891	742.5			
CCA	19860.13	20131.43	20238.94	17847.31	18682.67	19052.87			
Net Benefit in Cr	67.00	66.70	68.90	60.60	66.50	70.30			

	Optimal areas in Ha obtained at 4500Ha-m of Water Availability									
CROPS	Ai<=TIA	10%	20%	30%	40%	50%				
Kh. Jowar	2435	2695	2207.69	3185	3430	3675				
Kh. Groundnut	3910	3803.8	3349.68	3547.43	3018.47	3049.82				
Kh. Maize	3570	3927	2856	2680.88	4646.46	5244.12				
Kh. Pulses	0	3091.5	2748	2404.5	2061	1717.5				
Rb. Jowar	1465	1611.5	1172	1025.5	1177.58	1600.42				
Rb. Maize	1955	2150.5	1564	1368.5	1173	977.5				
Rb. Wheat	1924	0	2704	2366	2028	1690				
Rb. Bengal Gram	0	463.5	412	360.5	309	257.5				
Rb. Green Gram	0	463.5	412	360.5	309	257.5				
Rb. Sunflower	1080	1188	864	1404	1512	1620				
Cotton	1485	1633.5	1188	1039.5	891	742.5				
CCA	17824.78	21027.8	19477.37	19742.32	20555.52	20831.88				
Net Benefit in Cr	68.40	68.40	62.80	67.70	69.75	71.71				

Table 9.0: Optimized cropping pattern in study area for water availability of 4500 Ha-m

Table 10.0: Optimized cropping pattern in study area for water availability of 5000 Ha-m

Optimal area in Ha obtained at 5000 Ha-m of Water Availability									
CROPS	Ai⊐≤TIA	10%	20%	30%	40%	50%			
Kh. Jowar	2435	2695	2607.73	3185	3430	3675			
Kh. Groundnut	3910	3803.8	3128	2971.43	3011.44	3051.46			
Kh. Maize	3570	3927	2856	3478.82	3988.64	4498.46			
Kh. Pulses	0	3091.5	2748	2404.5	2061	1717.5			
Rb. Jowar	1465	1611.5	1172	1904.5	2051	2197.5			
Rb. Maize	1955	2150.5	1564	1368.5	1173	977.5			
Rb. Wheat	1924.78	0	2704	2366	2028	1690			
Rb. Bengal Gram	0	463.5	412	360.5	309	257.5			
Rb. Green Gram	0	463.5	412	360.5	309	257.5			
Rb. Sunflower	1080	1188	1296	1404	1512	1620			
Cotton	1485	1633.5	1188	1211.91	1300.8	1389.69			
CCA	17824.78	21027.8	20087.73	21015.66	21173.89	21332.12			
Net Benefit in Cr	68.43	68.40	66.00	68.90	78.00	72.60			

Optimal areas in Ha obtained at 5500Ha-m of Water Availability								
CROPS	Ai<=TIA	10%	20%	30%	40%	50%		
Kh. Jowar	2435	2695	2607.73	3185	3430	3675		
Kh. Groundnut	3910	3803.8	3128	2984	3025.1	3152.71		
Kh. Maize	3570	3927	2856	2899.37	3361.13	3628.77		
Kh. Pulses	0	3091.5	2748	2404.5	2061	1717.5		
Rb. Jowar	1465	1611.5	1172	1904.5	2051	2197.5		
Rb. Maize	1955	2150.5	1564	1368.5	1173	977.5		
Rb. Wheat	1924.78	0	2704	2366	2028	1690		
Rb. Bengal Gram	0	463.5	412	360.5	309	257.5		
Rb. Green Gram	0	463.5	412	360.5	309	257.5		
Rb. Sunflower	1080	1188	1296	1404	1512	1620		
Cotton	1485	1633.5	1188	1930.5	2079	2227.5		
CCA	17824.78	21027.8	20087.73	21167.41	21338.23	21401.5		
Net Benefit in Cr	68.40	68.40	66.10	69.30	71.30	73.14		

Table 11.0: Optimized cropping pattern in study area for water availability of 5500 Ha-m

5.0 Conclusions

Markandeya reservoir project was designed to irrigate 23760 Ha of land. The maximum capacity of reservoir is 9344 Ha-m. The different proposed cropping pattern scenario is formulated for Markandeya command area based on irrigable command area and volume of water at different water availability in the reservoir Based on the study carried out, the following conclusions are made:

- i. The mean monthly rainfall data for about past 30 years and Hydro-Meteorolological data for past 10 years are used n calculating the net irrigation requirements for each of the crops in the study area.
- ii. The LP model developed for the study area is run for maximum net benefits using the software LINGO.
- iii. The objective function of the model is subject to the following constraints: water availability, crop land requirement, Human labour cost, animal and machine power cost, seed cost, fertlizers and manure cost, fixed cost etc.
- iv. The linear programming model is run for lowest water availability of 2000 Ha-m and then the model is also run for increased water availability in the increments of 500 Ha-m.
- v. The optimal area of each crop to be allotted by LP model is less than or equal to total area of land allotted to each of the crops as given by the Irrigation department thus meeting the objective of maximum net benefit.

- vi. The study is also carried for each of the water availability case by varying the allotted areas of each crop by ± 10 % to ± 50 %.
- vii. The maximum net benefit for 2000 Ha-m availability is 54.12 Crores and increases to 78 Crores for 5000 Ha-m water availability.
- viii. The total optimal cultivated area by LP model for 2000 Ha-m water availability is found to be 15485.62 Hectares and is increased to 21173.82 Hectares for 5000 Ha-m water availability.
- ix. This different optimum cropping areas and net benefit obtained from LP model for different water availabilities are summarised in Table 12.

		EXISTING AREA in Ha	WATER AVAILABILITY							
Seam	CROPS					3500 Ha-m at ±30%Ai	4000 Ha-m at ±20%Ai		5000 Ha-m at ±40%Ai	
KHARIF	JOWAR	2435	1823.07	1470	1850	3185	2940	3675	3430	3675
	GROUNDNUT	3910	5083	5474	5474	5083	4146.25	3049.82	3011.44	3152.71
	MAIZE	3570	4641	3849.6	3487.14	2950.67	4284	5244.12	3988.64	3628.77
	PULSES	3435	2404.5	1374	2061	2404.5	2748	1717.5	2061	1717.5
RABI	JOWAR	1465	1025.5	879	879	1025.5	1248.69	1600.42	2051	2197.5
	MAIZE	1955	0	1173	1173	1368.5	1564	977.5	1173	977.5
	WHEAT	3380	0	0	0	0	0	1690	2028	1690
	BENGAL GRAM	515	360.5	309	309	360.5	412	257.5	309	257.5
	GREEN GRAM	515	360.5	309	309	360.5	412	257.5	309	257.5
	SUNFLOWER	1080	0	648	648	990.09	1296	1620	1512	1620
	COTTON	1485	0	0	891	1030.5	1188	742.5	1300.8	2227.5
CCA in Ha			15698.07	15485.62	17081.8	18767.77	20238.94	20831.88	21173.89	21401.5
Maximum Benefit in 10^8			5.32	6.014	6.31	6.69	6.89	7.171	7.8	7.314

Table 12.0: Optimized cropping pattern in study area for different water availabilities

x. The maximum optimum cropping area and net benefit obtained from LP model for different water availabilities are as given in Figure 2.0.

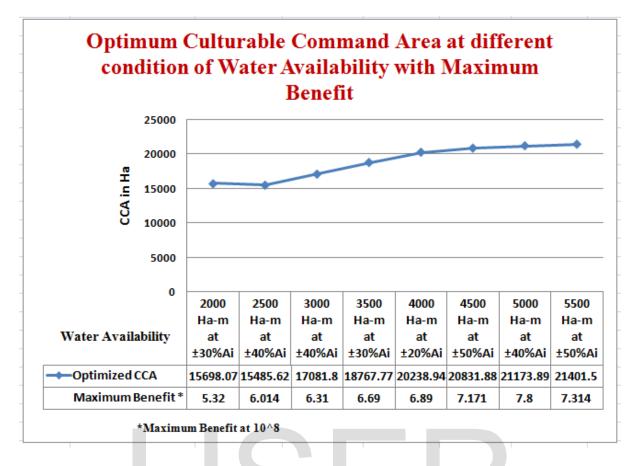


Figure 2.0: Maximum Optimized cropping area and Net benefit in study area for different water availabilities

6.0 Recommendations

Farmers are recommended to practice cropping pattern in the study area as suggested in Table 12.0 in order to get maximum net benefit for different water availabilities from the reservoir. The farmers should have adequate knowledge on the crop varieties used so as to know the best time to sow and harvest the crops, expected yield under full irrigation and all proper agronomic practices to be adopted.

Farmers are encouraged to fully protect their crops against diseases, pests and weeds. Diversification and optimum crop production can be practiced in command areas of Markandeya. Agronomic measures such as varying tillage practices and mulching can reduce the demand for irrigation water.

The farmers should be made aware of economic analysis to find out the optimum cropping pattern and profitably use their cropped areas for maximum net returns.

Acknowledgements

The author's wishes to thank Vice-Chancellor, VTU, Belagavi and P.G. co-ordinator, VTU, Belagavi for extending the facilities for carrying out this research work. Special thanks are extended to the Management and Principal of KLS Gogte Institute of Technology, Belagavi, Karnataka, India for their continued support in carrying out this research work.

References

[1] Food and Agriculture Organization (FAO) (1992) CROPWAT: A Computer Program for Irrigation Planning and Management, by M. Smith. FAO Irrigation and Drainage Paper No. 46. Rome.

[2] Ali Abdzad Gohari, "Simulation of Peanut (Arachis hypogaea L.) with Cropwat model in Irrigation Condition and Rainfed". Sci. Agri.2 (3), 2013, 54-59.

[3] Nithya B.K., Shreedhar .R., Dr. Shivapur A.V., "Water Requirements of Selected Crops in Kunigal Command Area", I-manager's Journal of Civil Engineering" - (eISSN 2249-0779, pISSN 2231-1068), Volume 5, Issue 2, March-May 2015, pp 24-30.

 [4] Shreedhar .R., Dr. Shivapur A.V., Nithya B.K., "Deficit Irrigation management of Major Crops in Kunigal Command Area", International Journal of Scientific & Engineering Research, Volume 6, Issue
 9, September-2015, ISSN 2229-5518, pp 170-185.

[5] Hall, W. A., and Dracup, J. A.Water Resources System Engineering , McGrawHill, New york, 1970.

[6] Loucks, D. P., Stedinger, J. R. and Haith, D. A, "Water Resources System Planning and Analysis" Prentice Hall, Englewood Cliffs, New Jersey, 1981.

[7] Singh, D. K., Jaiswal, C. S., Reddy, K. S., Singh, R. M., and Bhandarkar, D. M., "Optimal Cropping Pattern in a Canal Command Area", Agricultural Management, pp 1-8, 2001

[8] Srinivasa Raju, K., and Nagesh Kumar, D., "Optimum cropping pattern for Sri Ram Sagar Project: A Linear Programming approach", Journal of Applied Hydrology, Volume 13, No.1 & 2, page 56-67, 2000.

ABOUT THE AUTHORS

R.Shreedhar is currently working as an Associate Professor in Civil Engineering Department at Gogte Institute of Technology, Belagavi affiliated to Visvesvaraya Technological University, Belagavi. He received his post graduate from National Institute of Technology His research interests include optimal scheduling of crops, deficit irrigation, bridges and hydraulic structures. He has published technical papers in International and National journals in the field of water resources engineering and bridges. He is life member of Indian technical society, India and fellow member of Institution of Engineers, India.

Chandrashekarayya Hiremath is currently working as Assistant Professor, Water & Land Management, Department of P.G. Studies, Visvesvaraya Technological University, Belagavi, Karnataka, India. His area of interest includes Hydrology, Watershed Management, EIA, and Disaster Management.

Girish Shetty is currently persuing his Master's in Water and Land Management, Department of P.G. Studies, Visvesvaraya Technological University, Belagavi, Karnataka, India. His research interests irrigation management and optimization. He has extensively worked on irrigation software "CROPWAT 8.0" developed by Joss Swennenhuis for the Water Resources Development and Management Service of FAO.

